# diff算法
在创建Fiber树那一章提到过一个函数叫reconcileChildFibers。也简单的说了一下在update时这个函数根据当前的workInProgress克隆一个Fiber节点。这就是diff算法的过程
# diff算法大致逻辑
diff算法有比较workInProgress和当前的current Fiber。有三个前提
1、只对比同级节点。跨层级节点不会进行复用
2、不同类型节点生成的dom树不同。此时会直接销毁
3、根据key对元素能否服用提供线索
function reconcileChildFibers(returnFiber, currentFirstChild, newChild, lanes) {
// This function is not recursive.
// If the top level item is an array, we treat it as a set of children,
// not as a fragment. Nested arrays on the other hand will be treated as
// fragment nodes. Recursion happens at the normal flow.
// Handle top level unkeyed fragments as if they were arrays.
// This leads to an ambiguity between <>{[...]}</> and <>...</>.
// We treat the ambiguous cases above the same.
var isUnkeyedTopLevelFragment = typeof newChild === 'object' && newChild !== null && newChild.type === REACT_FRAGMENT_TYPE && newChild.key === null;
if (isUnkeyedTopLevelFragment) {
newChild = newChild.props.children;
} // Handle object types
var isObject = typeof newChild === 'object' && newChild !== null;
if (isObject) {
switch (newChild.$$typeof) {
case REACT_ELEMENT_TYPE:
return placeSingleChild(reconcileSingleElement(returnFiber, currentFirstChild, newChild, lanes));
case REACT_PORTAL_TYPE:
//...
case REACT_LAZY_TYPE:
//...
}
}
if (typeof newChild === 'string' || typeof newChild === 'number') {
return placeSingleChild(reconcileSingleTextNode(returnFiber, currentFirstChild, '' + newChild, lanes));
}
if (isArray$1(newChild)) {
return reconcileChildrenArray(returnFiber, currentFirstChild, newChild, lanes);
}
if (getIteratorFn(newChild)) {
return reconcileChildrenIterator(returnFiber, currentFirstChild, newChild, lanes);
}
if (isObject) {
throwOnInvalidObjectType(returnFiber, newChild);
}
if (typeof newChild === 'undefined' && !isUnkeyedTopLevelFragment) {
// If the new child is undefined, and the return fiber is a composite
// component, throw an error. If Fiber return types are disabled,
// we already threw above.
switch (returnFiber.tag) {
case ClassComponent:
{
{
var instance = returnFiber.stateNode;
if (instance.render._isMockFunction) {
// We allow auto-mocks to proceed as if they're returning null.
break;
}
}
}
// Intentionally fall through to the next case, which handles both
// functions and classes
// eslint-disable-next-lined no-fallthrough
case Block:
case FunctionComponent:
case ForwardRef:
case SimpleMemoComponent:
{
{
{
throw Error( (getComponentName(returnFiber.type) || 'Component') + "(...): Nothing was returned from render. This usually means a return statement is missing. Or, to render nothing, return null." );
}
}
}
}
} // Remaining cases are all treated as empty.
return deleteRemainingChildren(returnFiber, currentFirstChild);
}
react会根据当前workInProgress类型比如object,array等(实际上就是单节点或者多节点)来判断走哪个逻辑
# 单节点对比
单节点对比主要发生在reconcileSingleElement函数
function reconcileSingleElement(returnFiber, currentFirstChild, element, lanes) {
var key = element.key;
var child = currentFirstChild;
while (child !== null) {//遍历同时也是判断是mount还是update
if (child.key === key) { // key相同
switch (child.tag) {
case Fragment:
//...
case Block:
//...
default:
{
if (child.elementType === element.type || (
isCompatibleFamilyForHotReloading(child, element) )) {
deleteRemainingChildren(returnFiber, child.sibling); //删除父节点剩下的子节点。
//也就是删除自己的兄弟节点
var _existing3 = useFiber(child, element.props); // 这个函数只有几行代码。
//就是根据当前节点克隆一个节点
_existing3.ref = coerceRef(returnFiber, child, element);
_existing3.return = returnFiber;
return _existing3;
}
break;
}
} // Didn't match.
deleteRemainingChildren(returnFiber, child);
break;
} else { // key不相同
deleteChild(returnFiber, child);
}
child = child.sibling;
}
if (element.type === REACT_FRAGMENT_TYPE) {
var created = createFiberFromFragment(element.props.children, returnFiber.mode, lanes, element.key);
created.return = returnFiber;
return created;
} else {
var _created4 = createFiberFromElement(element, returnFiber.mode, lanes);
_created4.ref = coerceRef(returnFiber, currentFirstChild, element);
_created4.return = returnFiber;
return _created4;
}
}
注意所谓的单节点对比并不一定是指新老节点都是单节点。单节点对比发生的情况仅仅是指新节点是单节点。。
单节点对比首先是个while循环,循环老节点的所有兄弟节点,遍历过程如下
节点key与新节点key相同
- 该节点与新节点type相同
表示该节点可复用。通过useFiber方法复制一个节点。并调用deleteRemainingChildren方法删除剩余兄弟节点
- 该节点与新节点type不同
表示该节点不可复用,继续遍历
节点key与新节点key不同
调用deleteChild方法删除该节点,继续遍历
# 多节点对比
多节点对比情况比单节点要复杂一样。差不多分了三种情况
- 节点更新(type、key、props等变化)
- 新增节点
- 删除节点
function reconcileChildrenArray(
returnFiber: Fiber,//父fiber节点
currentFirstChild: Fiber | null,//childs中第一个节点
newChildren: Array<*>,//新节点数组 也就是jsx数组
lanes: Lanes,//lane相关 第12章介绍
): Fiber | null {
let resultingFirstChild: Fiber | null = null;//diff之后返回的第一个节点
let previousNewFiber: Fiber | null = null;//新节点中上次对比过的节点
let oldFiber = currentFirstChild;//正在对比的oldFiber
let lastPlacedIndex = 0;//上次可复用的节点位置 或者oldFiber的位置
let newIdx = 0;//新节点中对比到了的位置
let nextOldFiber = null;//正在对比的oldFiber
for (; oldFiber !== null && newIdx < newChildren.length; newIdx++) {//第一次遍历
if (oldFiber.index > newIdx) {//nextOldFiber赋值
nextOldFiber = oldFiber;
oldFiber = null;
} else {
nextOldFiber = oldFiber.sibling;
}
const newFiber = updateSlot(//更新节点,如果key不同则newFiber=null
returnFiber,
oldFiber,
newChildren[newIdx],
lanes,
);
if (newFiber === null) {
if (oldFiber === null) {
oldFiber = nextOldFiber;
}
break;//跳出第一次遍历
}
if (shouldTrackSideEffects) {//检查shouldTrackSideEffects
if (oldFiber && newFiber.alternate === null) {
deleteChild(returnFiber, oldFiber);
}
}
lastPlacedIndex = placeChild(newFiber, lastPlacedIndex, newIdx);//标记节点插入
if (previousNewFiber === null) {
resultingFirstChild = newFiber;
} else {
previousNewFiber.sibling = newFiber;
}
previousNewFiber = newFiber;
oldFiber = nextOldFiber;
}
if (newIdx === newChildren.length) {
deleteRemainingChildren(returnFiber, oldFiber);//将oldFiber中没遍历完的节点标记为DELETION
return resultingFirstChild;
}
if (oldFiber === null) {
for (; newIdx < newChildren.length; newIdx++) {//第2次遍历
const newFiber = createChild(returnFiber, newChildren[newIdx], lanes);
if (newFiber === null) {
continue;
}
lastPlacedIndex = placeChild(newFiber, lastPlacedIndex, newIdx);//插入新增节点
if (previousNewFiber === null) {
resultingFirstChild = newFiber;
} else {
previousNewFiber.sibling = newFiber;
}
previousNewFiber = newFiber;
}
return resultingFirstChild;
}
// 将剩下的oldFiber加入map中
const existingChildren = mapRemainingChildren(returnFiber, oldFiber);
for (; newIdx < newChildren.length; newIdx++) {//第三次循环 处理节点移动
const newFiber = updateFromMap(
existingChildren,
returnFiber,
newIdx,
newChildren[newIdx],
lanes,
);
if (newFiber !== null) {
if (shouldTrackSideEffects) {
if (newFiber.alternate !== null) {
existingChildren.delete(//删除找到的节点
newFiber.key === null ? newIdx : newFiber.key,
);
}
}
lastPlacedIndex = placeChild(newFiber, lastPlacedIndex, newIdx);//标记为插入的逻辑
if (previousNewFiber === null) {
resultingFirstChild = newFiber;
} else {
previousNewFiber.sibling = newFiber;
}
previousNewFiber = newFiber;
}
}
if (shouldTrackSideEffects) {
//删除existingChildren中剩下的节点
existingChildren.forEach(child => deleteChild(returnFiber, child));
}
return resultingFirstChild;
}
- 第一次遍历 因为老的节点存在于current Fiber中,所以它是个链表结构,还记得Fiber双缓存结构嘛,节点通过child、return、sibling连接,而newChildren存在于jsx当中,所以遍历对比的时候,首先让newChildren[i]与oldFiber对比,然后让i++、nextOldFiber = oldFiber.sibling。在第一轮遍历中,会处理三种情况,其中第1,2两种情况会结束第一次循环
- key不同,第一次循环结束
- newChildren或者oldFiber遍历完,第一次循环结束
- key同type不同,标记oldFiber为DELETION
- key相同type相同则可以复用
newChildren遍历完,oldFiber没遍历完,在第一次遍历完成之后将oldFiber中没遍历完的节点标记为DELETION,即删除的DELETION Tag
- 第二个遍历考虑三种情况
- newChildren和oldFiber都遍历完:多节点diff过程结束
- newChildren没遍历完,oldFiber遍历完,将剩下的newChildren的节点标记为Placement,即插入的Tag
- newChildren和oldFiber没遍历完,则进入节点移动的逻辑
- 第三个遍历 主要逻辑在placeChild函数中
function placeChild(newFiber, lastPlacedIndex, newIndex) {
newFiber.index = newIndex;
if (!shouldTrackSideEffects) {
return lastPlacedIndex;
}
var current = newFiber.alternate;
if (current !== null) {
var oldIndex = current.index;
if (oldIndex < lastPlacedIndex) {
//oldIndex小于lastPlacedIndex的位置 则将节点插入到最后
newFiber.flags = Placement;
return lastPlacedIndex;
} else {
return oldIndex;//不需要移动 lastPlacedIndex = oldIndex;
}
} else {
//新增插入
newFiber.flags = Placement;
return lastPlacedIndex;
}
}
```